Dany jest okrąg O o promieniu R oraz środku w punkcie VC oraz dowolny punkt V1, z którego można poprowadzić linie styczne do tego okręgu gdy spełniona jest nierówność [1]. W przypadku, gdy nierówność [1] nie jest spełniona punkt V1 znajduje się wewnątrz okręgu i nie jest możliwe poprowadzenie stycznych do okręgu O.
[1]
Zapis wyrażenia w formacie TeX-a:
\left|\vec{V}_c-\vec{V}_1\right|>R
W celu wyznaczenia punktów styczności V2 i V3 konstrukcji geometrycznej z rysunku 31 należy wykorzystując stare dobre i poczciwe twierdzenie Pitagorasa obliczyć długość różnicy wektorów V2 i V1, wzór [2] wyznacza tę odległość.
Rys. 1
Konstrukcja geometryczna do obliczenia punktów styczności okręgu z punktem V1.
Nadszedł właściwy moment na wyznaczenie sinusa i kosinusa kąta leżącego pomiędzy wektorem VC-V2 a wektorem VC-V2. Do uzyskania tych wartości wykorzystane zostały stosunki odpowiednich długości boków trójkąta prostokątnego, jaki tworzą wektory V2, V1 oraz VC (prostopadłość trójkąta wynika ze styczności wektora V2 z okręgiem O). Zależności [3] oraz [4] umożliwiają wyliczenie sinusa i kosinusa kąta leżącego pomiędzy wektorem VC-V2 a wektorem VC-V2.